Conflict Analysis for Cooperative Merging Using V2X Communication

Hao M. Wang 1, Tamás G. Molnár 1, Sergei S. Avedisov 2, Ahmed H. Sakr 2, Onur Altintas 2, Gábor Orosz 1,3

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
2. Toyota Motor North America R&D - InfoTech Labs, Mountain View, CA, USA
3. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

Background & Motivation

- Merging remains one of the challenging traffic scenarios for both human-driven and automated vehicles [1]
- Due to human driver’s unpredictable behavior, conflict can often occur
- V2X communication is a promising way to prevent conflict [2] connected human-driven vehicles (CHVs) connected automated vehicles (CAVs)

- Optimization based methods [3]
 - Minimize overlap of vehicle positions in merging zone
 - Constraints formulated with goal of avoiding collisions
 - We consider the scenario where CAV interacts with CHV

- Reachability based methods [4]
 - In state space, numerically find the set where collision is unavoidable
 - Intervene once trajectory hits boundary
 - We want the CAV to make a decision much earlier

Merge scenario

- Two vehicles should not appear in the conflict zone at the same time
- Vehicle 1 shares position & velocity information via V2X (e.g., basic safety message)
- Make decision and design control algorithm for vehicle 2

Dynamical models of vehicles (longitudinal)

Vehicle 1
\[r_1 = -r_1, \]
\[v_1 = sat(v_1), \]
\[a_1 = -a_{max}. \]

Vehicle 2
\[r_2 = -r_2, \]
\[v_2 = sat(v_2). \]

Conflict scenario

Conflict Analysis

- Can Veh 2 merge ahead of or behind Veh 1?
- Optimization based methods
- Reachability based methods

Communication range & Controller

Communication range: Veh 2 has to receive one packet from veh 1 when veh 1 is at least \(r_1^2 \) away from the conflict zone (e.g., \(r_1^2 = 124 \) [m])

Decision making

\[\text{Decision} = \begin{cases}
\text{Merge ahead}, & \text{if } x(0) \in A_P, \\
\text{Merge behind}, & \text{otherwise}.
\end{cases} \]

Controller

\[u_2(t) = -\kappa \cdot \dot{x}, \]
where \(\kappa = \kappa_{\text{max}} \)

Packet update rate

Time to merge 12.42 s 10.80 s 10.57 s

Conclusion & Future work

- Proposed conflict analysis and applied to a merge scenario
- Designed decision making rule and controller
- Demonstrated that V2X can contribute to a conflict-free merge
- Will scale up conflict analysis for larger number of vehicles