Designing Auditory Takeover Requests Under Different Automated Vehicle Operational Environments
Shubham Agrawal, Duke Dodoo, Isaiah C. Mwamba, Tara Radvand, Samuel Labi
Lyles School of Civil Engineering, Purdue University, West Lafayette, IN

Background & Motivation
- CCAT Research Thrust: Human Factors
- Level 3 automated vehicles (AVs)
- Drivers can engage in non-driving related tasks (NDRTs)
- Requires a human driver as a fallback option
 - Shared responsibility for vehicle safety
- Takeover situations may arise if AV...
 - Ventures out of its operational boundaries
 - Experiences system failure
- Takeover situations can be time-critical
- Regaining situation awareness requires time and effort

Takeover request/alert
- Stimulus to prompt the driver to resume manual control
- Alert design can significantly impact takeover performance
- Multimodal alerts are generally superior to unimodal alerts
 - Auditory, visual, and haptic
- Mixed results on takeover performance within unimodal alerts
- Limited research comparing alert characteristics for the same modality
- This study analyzes different unimodal auditory alerts
 - Auditory alerts are common for in-vehicle critical warnings
 - Harder to miss (compared to visual)
 - Smaller chance of misinterpretation (compared to haptic)

Takeover Performance
- Existing studies evaluate one driving performance variable at a time
 - Did not consider non-linear relationships
- We use a comprehensive takeover performance metric
- Parameter selection based on literature and takeover situation

Experiment Design / Data Collection
- Four auditory alerts
 - 2 beeps (low and high frequencies) and 2 speech pitches (low and high pitch)
 - Participants indicate their preferred alert before the experiment
- Automated vehicle operational parameters
 - Two traffic densities (low and high)
 - Two takeover situations (blocked lane and missing lane markings)
- Non-driving related task
 - Music playlist creation task on a tablet
- Four driving simulator sessions on different days for each participant. In each session,
 - 4 simulated drives with different operational parameters
 - Single type of auditory alert to avoid psychological biases
 - Stimulus discrimination: which can lead to different response
 - Assimilation/contrast effects: response affected by previous stimulus
- Analysis
 - Takeover performance analysis for different alerts
 - Evaluate the effect of alert preference
- Research in progress...