Network Design for Autonomous and Connected Truck Platoons to Improve Energy and Pavement Sustainability
Ruifeng She and Yanfeng Ouyang University of Illinois at Urbana-Champaign

Objective

Network design framework to support autonomous and connected truck (ACT) platooning technology to enhance efficiency and sustainability of highway-based freight transportation by minimizing:
(i) truck fuel consumption due to air drag and traffic congestion, (ii) vehicle depreciation due to deteriorated pavement condition, and (iii) pavement life-cycle cost for rehabilitation activities.

Pavement LCC

\[c_{\text{pav}} = \frac{c_1}{\sum_{i=1}^{N} \left(1 + r \right)^i} + \frac{c_2}{\left(1 + r \right)} \]

- Simulate pavement damage under arbitrary platoon positions onto pavement service life.
- Wander 2D model (Gungor and Al-Qadi, 2020).
- Optimize pavement rehabilitation schedule to minimize rehabilitation cost and user cost

Fuel consumption due to air drag

\[c_{\text{drag}} = \sum_{i=1}^{N} \frac{c_1}{\left(1 + r \right)^i} + \frac{c_2}{\left(1 + r \right)} \int \frac{\rho C_D a^2}{2} \sum_{i=1}^{N} R(\theta_i) \]

- Computational fluid dynamics analysis (ANSYS Fluent) to simulate effect of truck positioning onto drag force.
- Validation with field test data.
- Extrapolation model to predict fuel consumption.

Network Design Model

- ACT platoon based on V2I communication.
- Dedicated lanes exclusively for platooning.
- Platoon configuration guidelines specified by agency

Results and Findings

- Proper design of truck platooning lanes allow compact and aligned traffic, which provides a good balances between fuel consumption and pavement life-cycle cost.
- Pavement rehabilitation cost could be subsidized by platoon lane users through toll fees.
- Societal cost of platoon traffic is generally lower than that on regular lanes, and channelized network flow show benefits under even low daily demand.

Acknowledgments

The financial support from CCAT for this study is greatly appreciated. This study is built upon collaborative teamwork conducted in cooperation with Profs. Imad Al-Qadi, Jeffery Roesler, Hadi Meidani, Hasan Ozer, and graduate students Erman Gungor, Egemen Okte, Sachindra Dahal, Aravind Ramakrishnan, Ashrat Alrajhi at the University of Illinois at Urbana-Champaign and Arizona State University.