

CENTER FOR CONNECTED

Project Title	Development of Situational Awareness Enhancing Systems for AV- Manual Handover and Other Tasks	
PI (Up to 2)	Samuel Labi	Sikai Chen
Telephone #	(765) 494-5926	(765) 494-5926
E-mail:	labi@purdue.edu	chen1670@purdue.edu
Institution:	Purdue University	Purdue University
Department:	Lyles School of Civil Eng.	Lyles School of Civil Eng.
Industry or	Dr. Barry Partridge	
Government Principal,	Director, Research and Development, Indiana Department of	
organization, and	Transportation, 1205 Montgomery Street, West Lafayette, Indiana	
contact information	47906, (765)463-1521, bpartridge@indot.in.gov	
Most relevant CCAT	Control & Operations	
research thrusts	X Enabling Technology	
(choose all applicable)	X Human Factors	
	Infrastructure Design & Management	
	X Modeling & Impleme	entation
	Policy & Planning	
Funding Request	\$100,000	
Matching Funds and	\$100,000 (Indiana DOT \$25,000; Delft University \$25,000; Chang An	
Source (if any)	University \$50,000)	
Total Project Cost	\$200,000	
Contract Number	69A3551747105	
Project start/end	01/01/2021 - 09/30/2022	
dates		
Project Abstract	Partially and conditionally automated vehicle systems (AVS) can	
	assist drivers with their driving tasks and have the potential to	
	significantly reduce driving-related burden. Drivers still play a critical	
	role such as monitoring the driving environment when the AVS is	
		rtain driving tasks when called upon by
	I -	is ample evidence in the literature and
		ot maintain necessary situational
	•	er the vehicle when needed due to task
	_	nent, or over-trust in AVS capabilities.
		sign mechanisms that assist drivers in
	=	of situational awareness for promoting a
		to full vehicle automation in the future.
	This study aims to design an	in-vehicle situational awareness

CENTER FOR CONNECTED

	(0.70) (0.10)	
	enhancing system (SAES) to facilitate AV-manual take-over in	
	partially and conditionally automated vehicles. In the first phase, we	
	will develop a periodic visual prompts-based SAES for directing	
	drivers' attention to selected areas of interest and evaluate its	
	impacts on drivers' situational awareness and takeover	
	performance. In the second phase, we will develop SAES that	
	generates dynamic visual prompts based on drivers' level of	
	situational awareness, and dynamic road and traffic conditions. This	
	study will conduct interactive driving simulator-based experiments	
	with SAES to collect driver physiological data (e.g., eye gaze	
	patterns, heart rate, and brain electrical activity) and micro-level	
	driving performance (e.g., steering wheel angle and	
	acceleration/deceleration). The collected data will be used to model	
	the impacts of SAES on drivers' situational awareness and takeover	
	performance in partial and conditional automation driving	
	environments.	
High-level	Implementation of this research product will mean adopting the	
implementation plan	developed in-vehicle situational awareness enhancing system (SAES)	
, ,	using eye-tracking technology by installing it in partially and	
	conditionally automated vehicles, for take-over purposes. When	
	deployed, SAES will be expected to mitigate the issues related to	
	task underload, vigilance decrement, and reduced situational	
	awareness for drivers. We expect that the proposed SAES can be	
	easily bootstrapped to the existing vehicles.	
Project Metrics	Number of papers presented at nationally and internationally	
1 Tojece Wiethes	renowned conferences	
	Number of journal papers published	
	Number of graduate student theses	
	Media stories and website hits	
	Number of public outreach events	
Web Links:	ccat.umtri.umich.edu	
[leave blank until		
•	https://engineering.purdue.edu/ccat	
project approval]	https://www.purdue.edu/discoverypark/cav/nextrans/index.php	
	1	

